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Abstract. We present an algorithm for segmentation of computed
radiography (CR) images of extremities into bone and soft tissue
regions. The algorithm is region-based in which the regions are con-
structed using a region-growing procedure based on two different
statistical tests. Following the region-growing process, a tissue clas-
sification method is employed. The purpose of the classification is to
label each region as either bone or soft tissue. This binary classifi-
cation goal is achieved by using a voting procedure that consists of
the clustering of regions in each neighborhood system into two
classes. The voting procedure provides a crucial compromise be-
tween the local and the global analysis of the image, which is nec-
essary due to strong exposure variations seen on the imaging plate.
Also, the existence of regions whose size is large enough such that
exposure variations can be observed through them makes it neces-
sary to use overlapping blocks during the classification. After the
tissue classification step, the resulting bone and soft tissue regions
are refined by fitting a second-order surface to each tissue, and
reevaluating the label of each region according to the distance be-
tween the region and surfaces. The performance of the algorithm is
tested on a variety of extremity images using manually segmented
images as the gold standard. The experiments show that our algo-
rithm provides a bone boundary with an average area overlap of
90% compared to the gold standard. © 2003 SPIE and IS&T.
[DOI: 10.1117/1.1526846]
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1 Introduction

Accurate diagnosis of disease states in medical radio-
graphic images often depends on the detection of small,
low-contrast details in the image. The visibility of these
details is dependent on the film’s tonescale curve. The to-
nescale response curve of traditional silver halide films is
determined by the film’s built-in chemical emulsion and the
development process. The manufacturer attempts to opti-
mize the film for a range of exposure techniques and exam
types. Digital radiographic imaging systems record raw im-
age data without the built-in tonescale curve and with a
greater dynamic range. The increased dynamic range of the
digital image, along with digital image processing tech-
nigues, enable the manipulation of the image before it is
viewed by the radiologist. Segmentation of the region of
interest(ROI) in the code value histogram is an important
first step in performing image enhancement processing.
Once identified, the range of code values corresponding to
the ROI can be optimally mapped, via a human brightness
perception model, to the film density response of a laser
printer or to the luminance response of a CRT for visual
interpretation. Robust algorithms exist for the segmentation
of direct exposure and collimation regions in radiographic
imagery.

Previous methods have focused on segmenting the code
value histogram based on knowledge of the body part being
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Fig. 1 Flowchart of the proposed algorithm.

imaged and the characteristics of the correspondingmentation and it is the reason for the poor performance of
histogram® For a particular body part, the histogram con- histogram-based techniques, such kasneans. To over-
tains certain feature@eaks, valleys, etcthat can be used come this problem, we propose a clustering-based algo-
to map code values to anatomical features. This techniqueithm that is governed by the observation that the overlap
lacks robustness in certain exam types and exposure condisetween the intensity profiles of bone and soft tissue be-
tions. Another approach focused on segmenting the imagecomes insignificant when the image is analyzed locally. The
into bone and tissue regions based on_a neural networklowchart of the proposed algorithm can be seen in Fig. 1.
classifier using texture measures as featfifBise time re-  The second stage of the algorithm, which we call the voting
quired to obtain the texture features makes this approachprocedure, performs the region-labeling task by local re-
impractical. The definition of a robust and effective method gion clustering using thek-means algorithm with two
to refine the estimate of the ROI by segmenting the boneclasses. The effect of exposure variations is compensated
and soft tissue components of the image has remained elufor by processing the image locally using the neighborhood
Sive. . o _ systems and subimages. Note that, the initial tessellation of
The algorithm proposed in this paper can be consideredihe image is provided by the first stage of the algorithm,
as a hybrld te_Chnique that Combine_s the_features of regionwhich is a region-growing approach, and it eﬁective|y in-
based and histogram-based techniquétistogram-based  troduces spatial constraints to the label field. The last stage
techniques follow the Bayesian approach for estimation of of the algorithm refines the labels of the regions by fitting a
the label field by modeling the image as a sample from asecond-order bivariate polynomial to each tissue and inves-
Gaussian distributed random field. Also, the intensity val- tigating the average distance between each region and the
ues of the pixels are assumed to be independent randorgurface of the label to which they belong. The surface-
variables whose density function parametemsean and  fitting stage can also be conceptualized as a clustering
variance values since they are Gaussian distriutedend  scheme in which the regions are clustered into two classes
on the label of the pixel. The assumption of equally likely ysing a different kind of metric than the usual orfesy.,
labels for every pixel results in the well-know-means  Mahalanobis or Euclidean distantessed in conventional
algorithm? There are also numerous papers in the literature clustering algorithms. From this point of view, the voting
that impose spatial constraints by modeling the label field procedure provides the initial classification. Each of the
as a Gibbs or Markov random field! In general, these  stages of the algorithm are explained in detail in the fol-
algorithms provide better results than tKemeans algo-  lowing sections.
rithm but they are also known for their significant compu-
tational burden. The main problem associated with the us-
age of histogram-based techniques in the context of thes 1 construction of Regions

segmentation of computed radiograpl@R) images is that ) , ) ,
CR images do not follow the image model that histogram- The first stage of the algorithm provides the tessellation of

based techniques rely on due to the exposure variations. the image using a region-growing type technique. For this
This paper presents a method for segmentation of digitalPurPose, two features are computed for each pixel. The

radiographic images into bone and soft tissue regions. Afeatures are denoted ag and o, wherei denotes the

detailed description of our method is presented in Sec. 2.index of the pixel site, and they reflect the local character-

The experiments and performance evaluation of the methodstics around the pixel that they belong.

are provided in Sec. 3. Finally, the conclusions are drawn in

Sec. 4. 1. ui: The median value of the intensities of the pixels
that are inside the neighborhood of pixgl assum-
2 Method ing eight-connectivity. The region-growing algo-

rithm depends on local differences that are sup-
pressed to some extent in the sample mean
computation. Because of this fact, the median value
is used instead of the sample mean to avoid smooth-
ing of region boundaries. More sophisticated

schemes for feature extraction such as iterative meth-

Segmentation techniques, in general, attempt to group pix-
els that have intensity-based similarities to provide a tessel-
lation of the image. However, the purpose of medical image
segmentation is to group pixels that belong to the same
tissue type. The difficulty of medical image segmentation

stems from the fact that the solutions of these two problems ods that preserve line structures were avoided due to
are not necessarily the same. Medical images frequently their hi hp tational co&t

possess high-intensity variations throughout the regions eir igh computational cost.

that correspond to the same tissue type. Furthermore, two 2. o;: The standard deviation of the intensities of the

different tissues can share very similar intensity profiles. pixels that are inside the neighborhood of pixel

The former characteristic is the main problem with CR seg- assuming eight-connectivity.
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The feature values are utilized for investigation of the
statistical similarity of each adjacent pixel pair where adja-
cency is defined in an eight-connectivity sense. For the '

pixel pair (x;,X;), the following statistical tests are utilized
to determine whether they are sufficiently similar to be in
the same region.

1. F test The pixels &;, x;) and their corresponding
neighbors are assumed to be the realizations of the
random variables whose distributions axé, ,viz)
andN(7;,vf), respectively. The well-knowf test, @ (b)
which derives from the fact that if;=»;, then the
RV of/a? has arF distribution with degrees of free-

dom (K—1, K—1), whereK is the size of both
ensembled s used to investigate the similarity of the have been extensively investigated in the literatdré?
variances of the distributions to test the hypothesis Our region-growing algorithm might be better understood
that both ensembles are indeed governed by the samdy visualizing the image as an undirected adjacency graph,
distribution. Note thatriz andgj? are the sample vari- Where each vertex corresponds to a pixel. According to this
ance values and have been computed in the featuréOnceptualization, the vertex that corresponds to the pixel
extraction step. Th& test formulation is as follows: ~ Xi. IS connected to vertices that correspond to pixgls
wherex; e N;, prior to the region-growing procedure. Note
Oj that N; denotes the set of pixels that are in the neighbor-
—<, (1) hood ofx . iaht- .. h . i
0; og o x,_,”assummgtﬁg tconbnetct|V|ty.T elgrt(;]mtng pro t
. . cedure will remove the arcs between pixels that are no
whereye is a predetermined threshold. Note that  giavistically similar. After removal, each mutually exclusive
is always greater than 1, and the reciprocal of @%.  gypgraph will form a region. An advantage of this process
must be considered i< o;. Variance is mainly a s that there is no assumption about the number of regions.
texture feature. Th€ test is the means of investigat- Depending on a purely local intensity profile is one of
ing whether two distributions have the same variance the main drawbacks of the proposed region-growing
and attempts to determine whether or not 2 pixels scheme. One additional arc is adequate to connect two mu-
belong to same tissue, assuming different tissue typegually exclusive subgraphs that form two adjacent regions.
possess different textures, hence different variances. Because of this, low-contrast areas of the image are suscep-

2. Mahalanobis distanceln addition to theF test, tible to leakage among regions. To reduce the possibility of
which performs a comparison based on the standard©2kageé among regions that correspond to different tissue
deviation values of both ensembles, we use the fol- YP€S, an edge map of the imageequired by using Sobel
lowing two tests in which; andx; are compared to operator with thinningis utilized by prohibiting the con-

the ensemble that consists &f and x and their nectivity of the pixels that lie on different sides of an edge
. X f ! contour. Note that the region construction process will not
neighbors, respectively,

be adversely affected by spurious edges sidgehey will
result in additional regions by breaking several arcs @nd

Fig. 2 Input images: (a) a knee scan and (b) a hand scan.

M< ym and M< VM 2 the main task of the region construction stage is to create a
gi j tessellation in which all regions are composed of one type
where yy, is a predetermined threshold. of tissue. Hence, the oversegmentation caused by spurious

edges in the edge map actually ensures a successful region
For a particular adjacent pixel paix( x;), if all the construction stage. More complex edge detection schemes
preceding statistical tests are satisfied, that pixel pair is saidsuch as the Canny edge detector are avoided due to their
to be connected. Following the investigation of the similar- computational cost.
ity of each adjacent pixel pair, regions that are defined as a Two different extremity images, a knee and a hand scan,
maximal set of pixels all belonging to the same connectedwere used as case studies. The input knee and hand images
components are formed. During the stages that follow re-With corresponding region-growing results can be seen in
gion growing, the algorithm basically attempts to label each Figs. 2a), 2(b), 3(a), and 3b), respectivelysee Color Plate
region as either bone or soft tissue. Therefore, it is vital to 1 for Fig. 3.
adjust the thresholdgy, andyg to construct regions whose )
pixels belong to only one type of tissue, otherwise some of 2-2 Voting Procedure
the pixels will inevitably be assigned incorrect tissue labels. Following the region-growing stage, each region is as-
While high threshold values will cause leakage betweensigned a tissue label using the voting procedure. Voting is a
regions that correspond to different tissue types, a valuebroad term and it has been used under several contexts in
that is too low will result in over segmentation, which de- the literature. Examples include the Hough transform re-
teriorates the performance of the stages that follow regionlated grouping techniqués, and the majority voting
growing. schemes used to combine the decisions of several
Region-growing type algorithms for image segmentation classifiers:* The procedure we propose assigns bone or soft
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tissue votes to the regions that have been constructed in théhe intensity profile of tissues makes simple detection
previous step using local two-class clustering. schemes applicable.

The exposure variations seen on the image plate prevent The preceding algorithm implicitly assumes that both
the digital radiographic images from having a bimodal his- is5,6 types exist in every neighborhood system. Even
togram. The significant overlap between the histograms of houah this i v th for i that bl
bone and soft tissue intensities makes the use of globaf oug IS 15 generay ) € case for |maggs at resemble
clustering algorithms inefficient. The voting procedure is "€ hand case study, it is not correct for images that re-
essentially governed by the following observation: BecauseSemble the knee case study. In such cases, the thickness of
of the relatively high x-ray absorption of bone, locally, the soft tissue varies greatly in areas close to the tissue
bone pixels are brighter than soft tissue pixels and the overboundary, which causes a significant image gradient mag-
lap between the intensity profiles of the two tissue types nitude compared to other areas of the image. This fact re-
disappears. Exposure variations make these observationgyits in densely clustered regions that belong to the same
mvlajhd'for %IoballanalySIS.d he i b dtissue type that can be observed in Fi¢p)3

uring the voting procedure, the image to be segmente The adverse effect of this phenomenon on the perfor-

is analyzed using overlapping blocks. The following nota- . . . .
tion is introduced to explain the voting procedure: mance of the voting procedure is obvious. When a neigh-

R, =m'th region borhood system consists of only one tissue type, which we
Vin(B) =votes for the bone label in the'th region call an ambiguous neighborhood system, some of the re-
Vi(S)=votes for the soft tissue label in tme'th region  9ions will inevitably acquire incorrect votes. i, happens
B, =K’th block to be an ambiguous system in an area where the regions
Rix =i'th region in thek’th block that belong to the same tissue type are densely clustered,
N =neighborhood system &, which is composed the neighborhood systems &;, will also be ambiguous.
of R;, and the regions that are adjacent to it Due to this fact, it will be highly unlikely for the systems of
Rjik =]’th region in Ny Rjik to compensate for the inaccurate votes that are gener-
Ljix =label of R;i, as the result of clustering of the ated by the ambiguity af\;, . The following assumptions
regions in\Vj, and observations have been made to construct a remedy for
The algorithm of the voting procedure is as follows: this problem.
Algorithm voting. 1. Observation In areas where regions from the same
For eachBy tissue type are densely clustered, the variation in the
For eachR;y direction of image gradient vectors reduces consider-
Compute the average intensities{®;iy}. ably. This fact can be clearly seen in Figag Even
Cluster{R;} using K-means algorithm with 2 though an easy way to quantify this characteristic is
clusters. to compute the standard deviation of gradient direc-
For eachR;; tions in each region, the inherent periodicity of direc-
If Ljiy is bone, incremeny(B) of correspond- tion angles makes this computation nontrivial. In-
ing Ry, stead, the following quantity was computed for each
If ;i is soft tissue, increment(S) of corre- region.
spondingR,. 1
Since a particular regiorR,,, will appear in different ®m:F» ' 6ij » (3)
blocks and neighborhood systems, it will acquire several pairi € R J € R N
votes. SpecificallyR,, will be processed in the neighbor- where 6;; is the angle between gradient vectors of
hood system of its own and in the neighborhood systems of adjacent pixels; andx; and 6;;<<180 deg, andN
adjacent regions. AlsoR,, will be processed inside the is the number of adjacent pixel pairs in regi@y, .
blocks in which a patch oR,, (which is denoted a®;y) The values of®,,, which is the average angle be-
lies. After all the blocks and regions are processed, the tween the gradient vectors of adjacent pixel pairs in
tissue labels of the regions are determined as follows: regionR,,, are depicted in Fig. ®). It is clear that
For eachR, the regions that contain the ambiguous neighborhood
If Vin(B)>Vin(S). R is @ bone region. systems have lower values 6¥,,.

If V(B)<V(S), R, is a soft tissue region.

If Vo (B)=V(S). the label ofR, is undecided. 2. Assumptionlf a neighborhood system is ambiguous,

Th . h label decided dered then the regions inside of it are soft tissue. Note that
€ regions whose 1abels are undecided are reconsidere this assumption is governed by the observations on

and their labels are assigned in the next stage, which is the results of the tessellation of the image provided

discu.ssed in the Sgc. 2.3. ' by the region-growing stage.
Prior to the voting procedure, the regions that corre-

spond to the background were detected using a simple The modified algorithm of the voting procedure, which
thresholding scheme. The fact that the background has anakes use 00, values, is as follows, whergg, is a pre-
relatively flat intensity pattern that does not overlap with determined threshold:

Journal of Electronic Imaging / January 2003/ Vol. 12(1) / 43
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(b)

Fig. 3 Results of region growing for (a) knee and (b) hand images. Each color represents a different
region.

(b)

Fig. 5 Classification results at the end of the voting procedure for (a) knee and (b) hand images. The
background, bone, soft tissue, and undecided regions are pseudocolored by using red, green, blue,
and yellow, respectively.
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(a) (b)

(d)

Fig. 6 Final segmentation of bone regions for (a) knee and (b) hand case studies and comparison of
the final results with corresponding manual segmentation for (c) knee and (d) hand case studies.
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sults at the end of voting procedure for knee and hand case
studies can be seen in Figgah and %b), respectively(see
Color Plate L

2.3 Refinement of Labels Via Surface Fitting

Even though the modified algorithm for the voting proce-

dure addresses the problem regarding the areas of image

where regions that belong to same type of tissue are

densely clustered, such areas are still prone to generate mis-

classifications. Due to the misclassifications and the exis-

(@) (b) tence of unlabeled regions, the tissue labels are reevaluated

by the last stage of the algorithm. This improves the seg-

mentation result provided by the voting procedure. The last

stage attempts to represent bone and soft tissue regions of

the image with second-order bivariate polynomials whose

coefficients are computed in a least-squdu®) sense. Af-

ter the computation of the surfaces, root mean sq(rang

fitting errors to both surfaces are computed for each region.

Then, the label of a particular region is reversed provided

that the rms error corresponding to its tissue type is greater

then the other. The regions whose labels have been left

undecided at the end of the voting procedure are assigned
© (d) labels during the first iteration.

Fig. 4 (a) and (b) directions of image gradient vectors of each pixel Th_e algorithm of label refinement with S_urface fitting

are depicted via mapping [0 to 360 deg]—[0 to 255]. Due to the step is as follows, whereg ,, and es, are defined as

periodicity of angles, pure black and white colors actually corre-

spond toI thk?/v _same_tﬁirection tir: tt:ri]s figur'e;_. Anhgle_s aieI me_aSL:{gd 1 ) 172

counterclockwise wi respect to € positive norizontal axis. IS ={ — (1) — i

clear that the pixels whicFr)l lie in softptissue regions close to the GB'm_[ N E1 [Peiciy (1) = Rm(1)] ] ' @

tissue boundary have similar gradient directions. (c) and (d) Values

@, of regions.

1 Mo 12
S”“ZIN—Z [Ps,k(i)(i)_Rm(i)]ZJ : )

Algorithm modified voting.
For eachl3,
For eachR;y
Compute the average intensities{@;i}.
If IR such that® ;> yq
Cluster {R;i} using K-means algorithm with

wherei is the index of the pixels that belong to regi®y,,

k(i) is the quadrant in which pixel with indaxlies, N, is

the size of regioriR,, andPg  andPsy are the second-
order bivariate polynomials for bone and soft tissue regions
in thek’th quadrant, respectively.

two clusters. Algorithm refinement of labels via surface fitting.
For eachR;ix Divide the image into four quadrants along
If £ is bone, incremeny(B) of correspond- the principal axes of tissue regions.
ing Ry, Iterate the following steps until no label is changed.
If Ljii is soft tissue, increment(S) of corre- Compute the surfaces in each quadrant
spondingR,. for bone,Pg i, and soft tissuePsy,
Else using LS fitting, fork=1...4.
For eachR;ix For eachR,
IncrementV(S) of correspondingR,,,. Compute € m=||Pgx— Rmlrums and esnm
The algorithm attempts to determine whether the neigh- =||Psx— Rullrus
borhood system about to be processed is ambiguous by If the label of Ry, is bone andeg > €5y,
examining the®, values of the regions that it includes. If Change the label to soft tissue
the answer is yes, the soft tissue votes of all regions are If the label of Ry, is soft tissue andkg
incremented, otherwise regular clustering is employed. <e€sm
Note that, the modified voting algorithm does not search for Change the label to bone

neighborhood systems that consists of only bone regions. A drawback of the surface-fitting algorithm is that, since
The preceding observation suggests that such a neighboiit depends on the LS data-fitting concept, it inherently as-
hood system\;, will be surrounded by systems that in- sumes that a label might be incorrect only if the size of its
cludes both tissues, and the regions that acquire incorrectorresponding region is relatively small. A large region has
votes during processing df;, will be compensated by the the ability to bend the surface to be fitted toward itself
processing of surrounding systems. The classification re-strongly due to the fact that LS data-fitting is very sensitive
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Table 1 Summary of the experiments.

Case Size Time (s) Ym YE Accuracy (%)
13 (knee) 501 312 59 0.50 1.50 92.7
18 (wrist) 381x556 68 0.55 1.45 89.9
20 (knee) 606x416 91 0.50 1.50 925
22 (knee) 526X 366 78 0.50 1.50 95.5
23 (knee) 566 341 77 0.50 1.50 96.0
25 (foot) 441X 486 79 0.50 1.45 92.8
38 (foot) 596x 441 90 0.60 1.50 92.3
47 (knee) 596X 286 66 0.55 1.50 95.1

5 (wrist) 426X576 87 0.55 1.50 93.1
52 (ankle) 551X 486 101 0.50 1.50 95.1
53 (hand) 451x 326 49 0.55 1.45 90.7
55 (ankle) 606 379 80 0.50 1.50 93.8

6 (foot) 381x581 71 0.50 1.50 82.4
9 (ankle) 321x581 74 0.50 1.50 92,5

to noise. Hence, even if a relatively large region is misclas- the final result and manual segmentation for knee and hand
sified during the voting procedure, its rms fitting error will case studies is provided in Figgcband Gd), respectively.
turn out to be small and this will make the label correction In these images, the blue regions indicate the pixels that
impossible. were classified as bone by the algorithm but as soft tissue
A common misclassification case in the images in which dUring manual segmentation, and vice versa for the green

the bone tissue is clustered toward the cefgech as knee regions.

is that, some of relatively small regions that are close to the Table 1, the summary of the experiments, which con-
) ' o tains the type of extremities, provides the sizafer crop-
tissue boundary can be labeled erroneously. This is due t B b P

X ; ! Sing) of the images, the computational time, and the values
the fact that comparing the regions close to the tissueqf thresholds for statistical tests. Note that the algorithm
boundary with the bone tissue surface is effectively an ex-does not employ any kind of training scheme, thus, the
trapolation. To correct such misclassifications, a binary parameter values have to be adjusted for each image. The
opening operation is applied to both bone and soft tissuevalues of parameters that are given in Table | show that for

regions after the surface fitting stage. a set of images that possess statistical similarities the opti-
mal values turn out to be very close to each other. This fact
3 Experiments clearly makes the parameter tuning process easy since the

parameter values of the first image in the set provide a very
good initial estimate for the remaining images.

To evaluate the performance of the algorithm statisti-
ly, the labeling process can be viewed as a binary hy-

The performance of the algorithm was tested on 14 extrem-
ity images, which included wrist, knee, hand, ankle, and
foot exams. Images that were manually segmented undeg,

;[jhaer ;ugﬁglgﬁgir?;airrw?géoelgg\lfatar\geirr? '{'ﬁé‘l agiftfger}e?](t)liiiéasn pothesis testing problem. Note that such a view treats back-
. - * ground detection as a trivial problem. If the events where a

250042048, 204& 2500, and 23921792, with 12 bits  pixe| belongs to bone and to soft tissue are assumed as the
per pixel. , o _ null and alternate hypothesis, respectively, the performance
_ For the experiments, second level approximation coeffi- of the algorithm can be evaluated by computing the ratio of
cients of the wavelet decomposition which exploits the ¢orrect detections to the total number of decisions where
wavelet filter Daubechies4 were usEdhfter the computa- being correct is defined with respect to the gold standard. In

tion of the approximation coefficients, the resulting images, tact, this ratio is the well-known parameter accuracy, which
which are essentially the versions of the originals that arejg equal to

acquired by filtering and downsampliriigy 4), are cropped

to feed the algorithm with an image that is free of artifacts
that occur toward the image boundaries. For each image TP+ TN
used in the experiment, blocks of size>684 which over-  accuracy- ’ (6)
lap 32 pixels in all directions were used. Note that this TP+TN+FN+FP

overlapping scheme ensures the inclusion of a particular

region,R,,, in several subimages.

The final segmentation results of the knee and the handwvhere (TN+TP), FN, and FP are the number of correct
case studies can be seen in Figsée Color Plate )2 The decisions, false alarnjshe green regions in Figs(® and
red regions in Figs. @) and Gb) show the bone tissue 6(d)], and misses$the blue regions in Figs.(6) and &d)],
detected by the algorithm. Also, visual comparison betweenrespectively.
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The experiments were conducted on an SGI Indigo2 4
workstation. We can see from Table 1 that the algorithm
provides over 90% accuraggxcept an outlier image, case
6) with reasonable computational time. The observer vari-

ability has to be taken into consideration when the accuracy 6.

results are interpreted. For this purpose, a particular hand
image (case % is manually segmented 10 times and the

accuracy values of those experiments are computed by as-g.

suming the original manual segmentation gold standard.
The manual segmentations resulted in an average accuracy
value of 96.53% with a standard deviation of 0.174. No
attempt was made to streamline or optimize the code for a;
more rapid completion of the analysis.

11.

4  Conclusions

We presented a novel algorithm for the segmentation of CR
images of the extremities. The algorithm requires no super-

12.

vision and performs the segmentation task with reasonable™®

computational complexity. All the parameters of the algo-

rithm, except the threshold values for statistical tests in the14.

region-growing stage;y and ye, were kept constant
throughout the experiments. This fact essentially makgs
and yg the only values that must be adjusted for each scan
in a set that consists of images that share the same statisti-
cal characteristics. Moreover, the experiments showed that
the algorithm is robust in parameter space. In other words,
the optimal parameter values o4,, and yg, which are
found experimentally for the images that share common
statistical properties, are close to each other. This propert
makes the adjustment of parameter values a relatively eas
task.

We believe that the algorithm we propose can be useful
for a variety of applications, including image enhancement
and automatic recognition of x-ray exam type. Further-
more, the voting procedure can be applied to any classifi-
cation problem provided that the observations on which the
voting procedure depends are valid for the image of con-
cern. Also, the extension of the voting procedure to more
than two classes and alternate features is trivial. As future
work, the application of the algorithm to 3D data sets and
different modalities, and also using fuzzy schemes instead
of hard clustering in the voting procedure are being consid-
ered.
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